Expressing and Computing Passage Time Measures of GSPN Models with HASL
نویسندگان
چکیده
Passage time measures specification and computation for Generalized Stochastic Petri Net models have been faced in the literature from different points of view. In particular three aspects have been developed: (1) how to select a specific token (called the tagged token) and measure the distribution of the time employed from an entry to an exit point in a subnet; (2) how to specify in a flexible way any condition on the paths of interest to be measured, (3) how to efficiently compute the required distribution. In this paper we focus on the last two points: the specification and computation of complex passage time measures in (Tagged) GSPNs using the Hybrid Automata Stochastic Logic (HASL) and the statistical model checker COSMOS. By considering GSPN models of two different systems (a flexible manufacturing system and a workflow), we identify a number of relevant performance measures (mainly passage-time distributions), formally express them in HASL terms and assess them by means of simulation in the COSMOS tool. The interest from the measures specification point of view is provided by the possibility of setting one or more timers along the paths, and setting the conditions for the paths selection, based on the measured values of such timers. With respect to other specification languages allowing to use timers in the specification of performance measures, HASL provides timers suspension, reactivation, and rate change along a path.
منابع مشابه
First Passage Time Computation in Tagged GSPNs with Queue Places
This paper presents an extension of the Generalized Stochastic Petri Net (GSPN) formalism that enables the computation of first passage time distributions. The tagged customer technique typical of queuing networks is adapted to the GSPN context by providing a formal definition and an automatic computation of the groups of tokens that can be identified as customers, i.e. classes of homogeneous e...
متن کاملPerformance Analysis of Computing Servers using Stochastic Petri Nets and Markov Automata
Generalised Stochastic Petri Nets (GSPNs) are a widely used modeling formalism in the field of performance and dependability analysis. Their semantics and analysis is restricted to “well-defined”, i.e., confusion-free, nets. Recently, a new GSPN semantics has been defined that covers confused nets and for confusion-free nets is equivalent to the existing GSPN semantics. The key is the usage of ...
متن کاملHASL: an expressive language for statistical verification of stochastic models
We introduce the Hybrid Automata Stochastic Logic (HASL), a new temporal logic formalism for the verification of discrete event stochastic processes (DESP). HASL employs Linear Hybrid Automata (LHA) as machineries to select prefixes of relevant execution paths of a DESP D. The advantage with LHA is that rather elaborate information can be collected on-the-fly during path selection, providing th...
متن کاملON REPRESENTING MULTICLASS M/M/k QUEUES BY GENERALIZED STOCHASTIC PETRI NETS
In this paper we study the relations between multiclass BCMP-like service stations and generalized stochastic Petri nets (GSPN). Representing queuing discipline with GSPN models is not easy. We focus on representing multi-class queuing systems with different queuing disciplines by defining appropriate finite GSPN models. Note that queuing discipline in general affects performance measures in mu...
متن کاملMapping Activity Diagram to Petri Net: Application of Markov Theory for Analyzing Non-Functional Parameters
The quality of an architectural design of a software system has a great influence on achieving non-functional requirements of a system. A regular software development project is often influenced by non-functional factors such as the customers' expectations about the performance and reliability of the software as well as the reduction of underlying risks. The evaluation of non-functional paramet...
متن کامل